How to Improve Your English Pronunciation

Pronunciation plays an important role in your life. Do you often hear people saying “Can you say that again?”

In what manner and periods do you overhear this when you’re communicating? Also if your terminology and English linguistic rules are flawless, it can still be problematic for individuals to comprehend you sinceyour pronunciation is not clear.

Articulating English words correctly can be one of the toughest parts of learning English.

The English semantic has some sounds that your inborn language might nothave.

So we have few guidelines for you, to help you pronounce superior.

Absorb to listen.

Beforehand you acquire how to communicate; you’ll want to learn how to listen. Certain sounds can be tough to tell apart when you’re paying attention. You need to be an active and attentive listener to speak well.

The stronger you get at earshot words, the better you will become at phonating them.

2. Observe  how your mouth and lips move.

While speaking, you move your mouth. How you move your mouth will certify how you pronounce a word.

The first step to correcting your mouth shape is to notice it and pay attention. Few ways you can notice that your mouth and lips are producing the correct shape:

Use a mirror. This is the best way to tell what your mouth is doing while you chat.

Put a finger in front of your lips (like you’re saying “shh”).

While you state, don’t move your finger. You should feel your lips touching away from or forceful against your finger.

Lookout at others mouth when they are speaking, notice the shape their mouth and lips make when they talk.

3. Pay heed to your tongue.

The foremost dissimilarity between rice and lice is in your tongue.

Subsequently when you speak, you move your tongue to make sounds. You probably didn’t even notice that, since you do it deprived of discerning. To improve your English pronunciation, it’s a good idea to check what your tongue is doing.

4. Apply  stress to sounds and words.

English is a hassled linguistic. That means some words and sounds are more important than others. You can hear this when you say a word out loud.

For example, the word “present” is pronounced with a stress at the end, so it sounds like this: “Pre-Sent.”

Sometimes where you put the stress in a word can change the word’s meaning. Say this word out loud: “present.” If you said “PREsent,” you are talking about a noun that means either “right this moment” or “a gift.” If you said “preSENT,” you are talking about a verb that means “to give or show.”

Here’s one moresample: the noun “ADDress” is the place where you live, and the verb “addRESS” is to speak to someone.

With enough practice, you can get what sounds right too.

5. Record yourself.

Another way to speak is that you record yourself with a camera. Use a camera and not just a sound recorder because it’s important to see how you speak, not only hear it.

Expressions while speaking play an important role.

Advertisements

Want to create the perfect resume?

In spite of having the appropriate knowledge/experience, additional accomplishments and decent results the competition may help one stand out, a below par designed resume will, too but for the incorrect cause

Your resume can make or break your probabilities of landing at an interview, and it isn’t so challenging to put a noble one together.

 These tips should be kept in mind to ensure you create a perfect resume that does justice to the hard work you have put in over the years:

Crosscheck for typographical and structural mistakes

Resume, build resume, tips to build the perfect resume, perfect resume, cv, employers, employee

Decent grammar is a must However, while enlisting and modifying it, you are expected to go over your resume a few times and you may miss out on errors since the content has become familiar to you.

Moreover, one of the greatest elementary yet usually made – a mistake is to leave a obvious typographical blunder or typo in your resume. While this may not make companies think that you aren’t qualified or skilled enough for the job, it does have the prospective to high point a lack of consideration to detail.

To evade these errors, in addition to a spell-check on your computer, ask your friends to go through your resume and make recommendations. Spell-check often misses out on grammar and other blunders which can be found physically.

Distinguish the content and ensure it flows well

https://akm-img-a-in.tosshub.com/indiatoday/images/bodyeditor/201909/applicant-selection-cv-resume-1200x2060.jpg?RklNo9tIltK87JOdAoS1PPIZjG8GCQxw

Folks frequently make the blunder of thinking that modifying the resume to suit the role means adding lines from the job description. This is far from the truth.

Why someone would want to see a copy-pasted description of the same thing they have put up to hunt for you.

In its place, to distinguish your resume, you mustpay attention on citing the significance you can add with your services, along with anything exceptional you have worked on in the past that is pertinent in terms of the job you are applying for.

Also, keep in mind that it is best to declare  your most recent experience first. This is likely to be the most advanced level of work, or the latest bit of skill development, that you have engaged in.

Check that the formatting is consistent

Though there are numerous features that make an impressive resume, bad formatting can undo all that hard work at a glimpse! The manner you present your resume matters.

Hence, if you are not going into a inventive field, you should ensure you maintain the same font through out – colors and styles too, only keeping headlines and subheads distinct.

Additionally, take care of the margins.

Straight forwardness is the key, particularly now that many establishments are using bots to screen resume beforehand they decide whether or not a HR member must have a look.

https://akm-img-a-in.tosshub.com/indiatoday/images/bodyeditor/201909/career-3449422_1280-1200x720.png?1wZFAVlZ0os1dwFK3Jym_ao.5xH.mWUx

. One page fits all – Keep the resume crisp and according to your experience

https://akm-img-a-in.tosshub.com/indiatoday/images/bodyeditor/201909/career-3478983_1280-1200x743.jpg?.iAWMr3RoLhwYShcn2QEohrEhrLuRfXa

The normal resume should be limited to a single page unless you have end numbers of experience, in that case it can be extended to two pages.

Employers receive hundreds of applications for the same job and, at best, are likely to scan through your resume for a few minutes.

You should be able to recapitulate each role or project with a couple of key points to highlight your contribution.

Add only what is appropriate and avoid the rest

If you do feel like providing additional roles and information, you can take to professional platforms such as LinkedIn.

Automatic Dependent Surveillance – Broadcast

For PPL, CPL & ATPL aspirants who wants to become a good pilot, during flying ADS-Bplays a vital role for ensuring accurate real-time surveillance and navigation. To ensure this, pilot has to be well versant with functionality of ADS-B & other related systems.  At Gracious Avatar during commercial pilot training classes for PPL, CPL & ATPL aspirants, ADS-B and relevant systems will be covered by the expert ground instructors.  Aircraft systems / equipment is one of the important topic which would be covered during CPL & APTL pilot training at Gracious Avatar, Gurgaon (India).

Automatic Dependent Surveillance – Broadcast

ADS-B is a Surveillance technique that relies on aircraft or airport vehicles broadcasting their identity, position and other information derived from on board systems.

ADS-B is a thorough new technology that is redefining COMMUNICATIONS – NAVIGATION – SURVEILLANCE in Air Traffic Management today.

Already proven and certified as a feasible low cost replacement for conventional radar, ADS-B allows pilots and air traffic controllers to “see” and control aircraft with more precision, and over a far larger percentage of the earth’s surface, than has ever been possible before.

Theory Behind The Nomenclature:

Automatic      –        It’s always ON and requires no operator intervention

Dependent    –        It depends on an accurate GNSS signal for position data

Surveillance   –        It provides “Radar-like” surveillance services, much like RADAR

Broadcast.    –         It continuously broadcasts aircraft position and other data to                                            any aircraft, or ground station equipped to receive ADS-B

How It Works?

ADS-B uses conventional Global Navigation Satellite System (GNSS) technology and a relatively simple broadcast communications link as its fundamental components. Also, unlike radar, ADS-B accuracy does not seriously degrade with range, atmospheric conditions, or target altitude and update intervals do not depend on the rotational speed or reliability of mechanical antennas.

The ADS-B capable aircraft uses an ordinary GNSSreceiver to derive its precise position from the GNSS constellation, then combines that position with any number of aircraft discrete, such as speed, heading, altitude and flight number. This information is then simultaneously broadcast to other ADS-B capable aircraft and to ADS-B ground, or satellite communications transceivers which then relay the aircraft’s position and additional information to Air Traffic Control centres in real time.

The implementation of the ADS-B system will support the provision of high performance surveillance, enhancing flight safety, facilitating the reduction of separation minima and supporting user demands such as user-preferred trajectories.

Ground Effect

For PPL, CPL & ATPL aspirants who want to become a good pilot, must be well conversant with the effects while aircraft is flying near to ground. Such instances are encountered while close to ground during take-off and landing..  At Gracious Avatar during commercial pilot training classes for PPL, CPL & ATPL aspirants, such instances / effects will be covered by the expert ground instructors.  These are the important topics which would be covered during CPL & APTL pilot training at Gracious Avatar, Gurgaon (India).

Ground Effect is the name given to positive influence on the lifting characteristics of horizontal surfaces of an aircraft wing when it is close to the ground. This effect is a consequence of the distortion of the airflow below such surfaces attributable to the proximity of the ground. It applies to both fixed and rotary wing aircraft.

The increase in Lift created by Ground Effect comes primarily from a reduction in the amount of induced drag generated which improves the lift/drag ratio. In most circumstances, this increased lift is supplemented by a direct increase in the lift generated by the wing.

Cyclostrophic Wind

For a PPL, CPL & ATPL aspirants who wants to become a good pilot, during flying prior to departure or enroute, earth atmosphere plays a vital role for safety of the aircraft.  To ensure this, pilot has to be well versant with earth atmosphere & other topics related to aviation meteorology.  At Gracious Avatar during commercial pilot training classes for PPL, CPL & ATPL aspirants, meteorology will be covered by the expert ground instructors.   Winds is one of the important topics which would be covered under meteorology subject during CPL & APTL pilot training at Gracious Avatar, Gurgaon (India).

WINDS

Cyclostrophic Wind

1.    If the wind is blowing along curved isobars of radius r with a velocity V it has an acceleration towards the centre, called centripetal force (V2/r). The centripetal force(C) acting on a unit volume of air=ρV2/r. If the Coriolis force is negligible as compared to the forces P & C, then
ρV2/r=P  therefore V= (Pr/ ρ)1/2 . Such a motion is called cyclostrophic. Near the centre of a tropical revolving storm or in a circular tornado, the equation gives a good approximation to the actual wind.
2.    Cyclostrophic wind is defined as wind that blows as a result of balance between PG Force & Cyclostrophic Force.

 

Gradient Wind

It is the wind that blows parallel to the curved isobars under the balance of Pr Grad Force, Coriolis Force & Centripetal Force. In mid latitudes this wind is closer approximation than geostrophic wind.

Isallobaric Wind

When the pressure changes rapidly, the geostrophic and gradient rules do not apply. In such a case another force called isallobaric force comes into play. This force is directed from higher isallobar to lower isallobar. This deflects the wind towards the falling pressure. The wind under the influence of P, f and isallobaric force is called the Isallobaric wind.

Effect of Surface Friction

The rough terrain causes friction. Depending upon wind speed, lapse rate and roughness of the surface, effect of friction may extend to about 1 km. This layer is called friction layer. Thickness of the layer is variable. Within the friction layer wind slows down and the Coriolis force reduces proportionately and is insufficient to balance Pressure Gradient Force. The wind is therefore, deflected towards the low pressure and the flow become cross isobaric.


As a rough rule, over sea where friction is small, surface wind blows at about 15o to isobars. Over land it is 30o to the isobars with its speed about 1/3 to 1/2 of geostrophic value.


For more info :- https://www.graciousavatar.in/Pilot-Training/ATPL.php

Why ATMOSPHERIC OBSCURITY Important in Commercial Pilot training

For a PPL, CPL & ATPL aspirants who wants to become a good pilot, during flying prior to departure or enroute, earth atmosphere plays a vital role for safety of the aircraft.  To ensure this, pilot has to be well versant with earth atmosphere & other topics related to aviation meteorology.  At Gracious Avatar during commercial pilot training classes for PPL, CPL & ATPL aspirants, meteorology will be covered by the expert ground instructors.   Atmospheric Obscurity is one of the important topics which would be covered during CPL & APTL pilot training at Gracious Avatar, Gurgaon (India).

ATMOSPHERIC OBSCURITY

 

Visibility

Visibility in pure air should be infinite. However, air is never pure and is laden with dust, smoke, industrial pollutants, aerosols etc. Presence of these suspended obscurities reduces the visibility.

Horizontal Visibility

Horizontal Visibility is the maximum distance along the horizontal up to which prominent objects can be seen with the naked eye and are recognized as such under natural light. Visibility may be different in different directions. The visibility reported by Met Office is the lowest Horizontal Visibility. During day Visibility is estimated by seeing objects at pre-measured distances, within and around the airfield. During night existing lights in and around the airfield at known distances are used. These are called Visibility Land Marks.

Runway Visual Range (RVR)

It is the distance up to which the pilot can see from the cockpit along the runway. RVR is reported when the visibility is less than 1500m. RVR is reported in multiples of 25M when between 50M & 150M, in multiples of 50M when between 150 & 800M, in multiples of 100M when between 800 & 1200M, and in multiples of 200M when more than 1200M.

 

PoorVisibility Phenomena

1.    Haze: Atmospheric obscurity due to very small particles of smoke, dust, water etc., wherein the visibility reduces to 5000M or less (but more than 2000M) is termed as haze. When the Relative Humidity is 75% or more, this is termed as Moist Haze(or simply Haze) whilst if the RH is less than 75% it is termed as Dust Haze or smoke Haze.It gives a milky appearance to the sky.
2.    Dust Haze: Atmospheric obscurity due to dust particles in suspension with RH less than 75% reducing visibility to 500oM or less is termed as Dust haze. It is caused by the strong winds in the desert or arid areas arising due to a steep pressure gradient kicking up dust in the stable lower layers of the atmosphere.
3.       Smoke Haze: Atmospheric Obscurity due to suspended smoke from industrial or domestic sources reducing visibility to 5000M or less is termed as Smoke haze. Smoke Haze occurs when wind is calm and there is strong ground inversion.
4.    Mist: Atmospheric obscurity due to suspended droplets wherein visibility reduces to 1000 M to less than 2000 M, with RH being 75% or more.
5.    Fog: Atmospheric obscurity due minute water droplets suspended in the air reducing visibility to less than 1000M.In Fog RH is nearly 100%. Fog may be termed as thick, moderate or light depending upon visibility.
6.    Smog: When smoke haze & fog co-exist, it is called Smog. In smoke visibility is very poor.
7.    Dust Storm: The visibility in dust storm is 5000M or less. If the dust storm is followed by rain visibility improves fast.    
8.    Precipitation: The visibility in precipitation depends on the size of the drop and intensity of precipitation. In moderate Rain vis may reduce to 1-3 km, in heavy Rain or showers to less than 1000M, in drizzle to 3 km and in snowfall it may reduce to less than 1000M.

Horizontal, Vertical & Slant Visibility

1.    Visibility reported by Met Office is minimum horizontal vis.
2.    Vertical visibility may be much better during shallow fog as it is the distance up to which one can see objects along the vertical.
3.    Slant visibility is the visibility at an angle and can be defined as the distance an object can be seen along the path that is at an an angle to the horizontal( usually glide path or landing path).In shallow fog this visibility is more than horizontal vis but less than vertical vis.

 

Instrumentsfor Measuring Visibility

1.    Scopograph or transmissometer are used for measuring vis along the different runways on an aerodrome. RVR equipment are installed along various runways to measure RVR.
2.    Close to take off & landing areas.
3.    The equipment consists of a light source and a photo-electric receiver, which generates electric current according to the obscurities present between the transmitter and receiver. The current so generated gives a measure of RVR. The display units are installed in Met Office and ATC Tower.

Fog

1.    Fog is composed of tiny water drops or ice crystals. It is nothing but a stratus cloud sitting smack on the ground. Fog occurs due to condensation of water vapour present in the layers of air close to the ground. Condensation can occur either by cooling of the air close to the ground or by feeding moisture in to the air to saturate it. Fog can be various types:
2.    Radiation Fog: Radiation Fog forms due to nocturnal cooling of the ground and the adjacent layers. The conditions favorable for formation of Radiation Fog are: a.    Clear skies b.    High relative Humidity e.g. after Rain c.    Light  freshening wind  of 3 to 8 kt 3.       Radiation fog is most frequent at about sunrise and dissipates within 2-3 hours after sunrise due to heating. If the Fog is thick it may take longer to lift. Generally fog lifts in to low stratus clouds before dissipating. Radiation Fog in India occurs mostly during winters after the passage of active western disturbances. It is almost a daily feature in winter season in the Valley of Brahmaputra River where adequate moisture is present and katabatic flow provides the required degree of turbulence and extra cooling. The most susceptible areas for radiation fog are NW India, UP, Bihar, Bengal and Assam (particularly south of Brahmaputra River).
4.    Vertically radiation Fog extends to only a few hundred feet whilst sometimes it can extend up to about 1500ft.
5.    Advection Fog: Advection Fog forms when warm moist air from elsewhere is transported over the cold surface (ground or water) where the surface temperature is less than the dew point of the advected air. Advection Fog forms both over land & sea. Coastal fogs over Bengal and Orissa during winters are due to a combined effect of advection from sea and radiation cooling. The Brahmaputra valley, the coastal areas and hills of Indian Peninsula experience advection Fog.
6.    Frontal Fog: Frontal Fog forms near the front due to saturation of air in the area of continuous rain ahead of the front. It also forms due to lowering of the cloud to the surface with the passage of a front.
7.    Steaming Fog: This type of Fog is common in higher latitudes when cold air mass flows over a warm sea surface. The water vapour from warm sea when comes in contact with the cold air aloft condenses to form steaming fog. It is common over frozen land, ice covered Polar Regions and over Icelandic and Norwegian regions. Over sea it is often referred to as sea smoke. It looks like steam coming out of the surface.

Fog Dispersal:

1.    Thermal Dispersion: When air is heated to temperatures above dew point, fog or cloud will dissipate.
2.    Dispersal using Hygroscopic Nuclei: When hygroscopic particles are injected into fog water drops form. This lowers the relative humidity of the air and fog dissipates.
For More Info :- https://www.graciousavatar.in/Pilot-Training/CPL.php

How Do I Become a Pilot

For a PPL, CPL & ATPL aspirants who wants to become a good pilot, during flying prior to departure or enroute, earth atmosphere plays a vital role for safety of the aircraft.  To ensure this, pilot has to be well versant with earth atmosphere & other topics related to aviation meteorology.  At Gracious Avatar during commercial pilot training classes for PPL, CPL & ATPL aspirants, meteorology will be covered by the expert ground instructors.   Humidity is one of the important topics which would be covered during CPL pilot training.

HUMIDITY

  1. Water vapor is always present in the air to a greater or lesser extent, in the troposphere.
  • Water evaporates into the air from oceans, lakes, vegetation etc. It ascends and forms clouds which cause precipitation.
  • Water exists in three phases: the gas (water vapor), liquid (rain, drizzle, shower) and solid(snow, hail).
  • The capacity of air to hold water vapor depends largely on temperature and to some extent on pressure. Higher the temperature, higher is the capacity of air to hold water vapor.
  • Dry Air: Air that contains no water vapor. Exists in upper troposphere or stratosphere.
  • Moist Air: The normal air that we breathe. It is also called unsaturated air.
  • Saturated Air: When air holds maximum water vapor, it is called saturated air.
  • Vapor Pressure: The partial pressure exerted by water vapor in the air. If p is the total pressure of air and e is the vapor pressure, then p-e is the pressure of dry air.
  • Saturated Vapor Pressure: It is the pressure exerted by water vapor when air is saturated.
  1. Absolute Humidity: It is the actual amount of water vapor contained in a given volume of air at a given temperature. It is expressed as g/m3.
  1. Humidity Mixing Ratio: It is defined as the mass of water vapor contained in a given mass of air. It is expressed as g/kg.
  1. Humidity Mixing Ratio for Saturated Air: It is defined as the maximum mass of water vapor that can be contained in a given mass of air at a particular temp and pressure. It is expressed as g/kg.
  1. Relative Humidity: It is defined as the ratio, in percentage, of the actual water vapor present in the air to the maximum it can hold at the same temperature and pressure.
  1. RH= HMRx100/HMR for saturated air.
  1. RH=Vapor pressure of Airx100/Saturation vapour pressure of Air.
  1. Wet Bulb Temperature (Tw Tw): It is the lowest temperature which air would attain by evaporating water into it to saturate it. Desert Coolers work on this principle.
  1. Dew Point Temperature (Td Td): It is the lowest temperature to which air should be cooled at constant pressure to saturate it with respect to water. Cooling below dew point causes condensation.
  1. Frost Point: It is the temperature to which air must be cooled to reach saturation with respect to ice. Cooling below the frost point causes formation of hoar frost.

Important Points

  1. As the temperature of the air increases, the amount of water vapour required to saturate it also increases.
  • At subzero temperatures water molecules have more energy and greater degree of freedom than ice, consequently the saturation vapour pressure over water drops is more than that over ice particles.
  • If water drops and ice particles co-exist, water drops will evaporate and condense on the ice particles. This explains rainfall from clouds which extend above 0oC and have both super cooled water drops and ice crystals co-existing.
  • Small water drops can exist in super cooled state up to -40o C.
  • For saturated Air( in Fog, Rain ) Air Temp(TT)=TwTw=TdTd
  • For unsaturated air: Dry Bulb Temp>Wet Bulb Temp>Dew Point

For more info :- https://www.graciousavatar.in/Pilot-Training/

How to TEMPERATURE Effect in Commercial Pilot Training

For a PPL, CPL & ATPL aspirants who wants to become a good pilot, during flying prior to departure or enroute, earth atmosphere plays a vital role for safety of the aircraft. To ensure this, pilot has to be well versant with earth atmosphere & other topics related to aviation meteorology. At Gracious Avatar during commercial pilot training classes for PPL, CPL & ATPL aspirants, meteorology will be covered by the expert ground instructors. Temperature is one of the important topics which would be covered during CPL pilot training.

TEMPERATURE

  1. Temperature is a measure of heat.
  • It is measured by means of thermometer in degrees Celsius or Fahrenheit. These scales are arbitrarily fixed with reference to the melting point of ice and the boiling point of pure water at normal pressure. On the Celsius scale these are respectively as 0⁰ C and 100⁰ C and in Fahrenheit scale as 32⁰ F and 212⁰ F. Celsius scale is used internationally, in aviation and science. Use of Fahrenheit scale is confined to English- speaking countries only.
  • Heat is a form of energy. As heat is extracted from a substance, its internal energy is reduced and the random motion of its molecules slows down. The molecules get arranged in a more orderly pattern than before. As more heat is extracted the cooling and orderliness increases. Finally a state is reached when no more heat can be extracted and the molecules reach their maximum orderliness and the molecular motion almost ceases. The lowest temperature is reached. This minimum temperature is the same for all substances, and is accordingly called the absolute zero (K). 1K=-273.16 ⁰ C.

Conversion to C, F & K

  1. F= 9C/5 + 32
  2. C= 5/9 (F-32)
  3. K= C+ 273
  4. Note that -40 ⁰ C = -40 ⁰ F

 

Instruments for Measurement

  1. Dry Bulb Thermometer, Wet Bulb Thermometer (the bulb is covered with a muslin cloth which is kept moist), Maximum Thermometer (like doctors Thermometer), Minimum Thermometer and Thermograph, are used for measuring temperature.
  • Mercury is used in thermometers except in Minimum Thermometer in which alcohol is used instead of mercury.
  • In Thermographs and in Upper Air temperature measurement, bi- metallic strips are used.
  • A minimum thermometer has dumbbell shaped iron index, which permits alcohol to pass through it when the temperature rises. When temperature falls the alcohol, which has a conclave meniscus, drags the index back to indicate minimum temperature.
  • Surface temperature is recorded at a height of 4 ft(1.25m) from the ground in shade(inside a Stevenson’s Screen).

Dry Air & Moist Air

  1. Air which has no water vapour content is called dry air. Such air may exist at very high levels. For all practical purposes unsaturated air is called dry air.
  • With water vapour <4 % (RH <100%) air is called unsaturated or dry.
  • With water vapour >4 %(RH 100%) air is called saturated air.

 

Heat & Temperature

  1. Specific Heat: It is defined as the heat required to raise the temperature of unit mass of a substance by 1⁰C. The specific heat of water, regarded as the highest is 1, that of ice 0.5 and of soil 0.2.
  • Latent Heat: It is defined as the amount of heat absorbed or released during change of phase from/to solid/liquid/vapour. It is absorbed during change from solid to liquid and liquid to gas and released during change of phase from vapour to liquid and liquid to solid.
  • When water changes to vapour, a certain quantity of heat is supplied. To change boiling water into vapour, more than five times as much heat is required as is needed to bring the temperature of ice cold water to a boil. Once the boiling begins, the temperature remains constant and the heat released is stored as latent heat. It is released as latent heat when the water vapour condenses to water.

Heat Transfer Processes

  1. Heat is transferred from one place to the other by conduction, convection and radiation.
  • Conduction: In this Process heat is physically transferred by the molecules by contact. Conduction is important process of heat transfer very close to the ground.
  • Convection: In this process heat is bodily transferred to the colder part of the fluid. As more than 70% of the earth is covered with water, hence the importance of convection.  In the atmosphere free Convection is triggered by intense solar heating and the forced Convection by topography.
  • Radiation: Everybody radiates heat at its temperature. In this process of heat transfer the medium is neither affected nor required. The solar radiation directly heats up the earth without affecting the atmosphere.
  • Other Methods: Advection, Latent Heat release, Turbulence, Up and downward motion of air are the other methods of heat transfer.

Diurnal Variation of Surface Temperature

  1. Diurnal variation of temperature is more over land areas than over sea/coastal areas.
  • Sea Surface temperature shows an average variation from day to night of less than 1⁰C, whereas over land the variation may average as much as 20⁰C.
  • Variation is max when wind is calm.
  • Due to nocturnal cooling the surface temperature continues to fall even after sunrise till a balance is reached between the incoming and outgoing radiation. The balance occurs a little after sunrise.
  • Cloud cover can hamper both cooling and heating.
  • Cloudy nights are warmer than clear nights
  • Cloudy days are less warm than clear days.

For more info :- https://www.graciousavatar.in/Pilot-Training/CPL.php

Aptl Integrated Course

For a PPL, CPL & ATPL aspirants who wants to become a good pilot, during flying prior to departure or enroute, earth atmosphere plays a vital role for safety of the aircraft.  To ensure this, pilot has to be well versant with earth atmosphere & other topics related to aviation meteorology.  At Gracious Avatar during commercial pilot training classes for PPL, CPL & ATPL aspirants, meteorology will be covered by the expert ground instructors.   Pressure is one of the important topic which has to be covered during commercial pilot training.

PRESSURE

 

Static & Dynamic Pressure

1.      When the air is at rest its molecules are in random motion all over. The pressure exerted by these molecules is uniform in all directions. This Pressure is called Static Pressure or Barometric Pressure.
2.      If the air is in motion an additional pressure is exerted in the direction opposite to the flow. This is called Dynamic Pressure or Wind Pressure. Wind pressure is used in the design of air speed indicator.

Pressure as Weight of the Air Column

1.      The atmospheric Pressure at any level is the weight of the column of air of unit cross-section extending vertically upwards to the top of atmosphere.
2.         As the weight decreases with height, the pressure also decreases with height.
3.         ICAO has adopted hector Pascal (hPa) as the unit of atmospheric pressure. The other units are mm, and inches.

 

 

  Relationship between Pressure & Altitude

1.      Roughly 1 hPa change in Pressure is equivalent to :

at MSL 27 ft
at 20000 ft 30 ft
at 30000 ft 50 ft
at 40000 ft 100 ft

2.      The pressure decreases with height from sea level to 600m at 4%, up to 1.5 km at 3% and up to 3.0 km at 2.5%. At 6 km it reduces to half the value at sea level and is negligible at 100 km.

Variation of Pressure in Warm & Cold Air

1.    Warm Air is less dense than the Cold Air.
2.    Pressure falls at a faster rate over a cold column of air than a warm column of air.
3.    Where upper Air Mean Temperatures are higher upper Air Mean Pressures are higher and where mean Temps are lower mean pressures are lower.

Diurnal Variation of Pressure

1.    Atmospheric Pressure follows a wavy pattern during 24 hours, showing maxima at 1000h & 2200h and minima at 0400h & 1600h local time. Such variations are very small at poles and large at equator.
2.    When the temperature is highest in the afternoon, the density of air close to the ground is low. Hence the pressure is lowest. At about sunrise when the temperature is lowest, the pressure is highest. There is a phase difference of about 3 hours between the temperature and the pressure.
3.    Diurnal variation of pressure is probably a natural oscillation of the atmosphere, having a period of almost 12 hours.
4.    As the air is continuous, if there is a high pressure at one place there has to be a low pressure on the opposite side of the globe. With the rotation of the earth the pressures also rotates. Hence, two maxima and two minima in 24 hours.

 

 

Pressure Systems

1.    Low (Cyclone): It is an area enclosed by an isobar with lowest pressure at the centre. When there are two or more closed isobars at an interval of 2 hPa, it is called a Depression. Winds around a low blow in anticlockwise direction in N hemisphere converging towards the centre. There is convergence and upward motion at a low. Hence it is associated with bad weather.
2.    Trough of Low: A tongue like extension of isobars from a low is called trough of low. Pressure along the trough is lower than on either side. Isobars along the trough are V- shaped and wind direction abruptly changes and backs.
3.    High: It is a region enclosed by isobars with highest pressure at the centre. Wind in a high moves in a clockwise direction. It is associated with fair weather but visibility is poor due to subsidence.
4.    Ridge: It is a wedge like extension of isobars from a high pressure area. Pressure is higher along the ridge than on either side.

 

Height Vs Pressure

Sea Level 1013 hPa
10000 ft 700 hPa
18000 ft 500 hPa
24000 ft 400 hPa
30000 ft 300 hPa
34000 ft 250 hPa
38000 ft 200 hPa
44000 ft 150 hPa
53000 ft 100 hPa

QFE: Pressure measured at the airfield setting point.
QNH: Pressure reduced to mean sea level using ISA specifications.
QNE: 1013 set on altimeter sub scale, will, on landing give an altitude known as the QNE value.
QFF: Pressure reduced to mean sea level using standard met practices (temperature at the station, which is isothermal lapse rate).
For more info :- https://www.graciousavatar.in/Pilot-Training/ATPL.php

Blog at WordPress.com.

Up ↑

Create your website at WordPress.com
Get started